9 research outputs found

    Maximizing Resource Utilization In Video Streaming Systems

    Get PDF
    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to utilize include server bandwidth, network bandwidth, battery life in battery operated devices, and processing time in limited processing power devices. In this work, we propose new techniques to maximize the utilization of video-on-demand (VOD) server resources. In addition to that, we propose new framework to maximize the utilization of the network bandwidth in wireless video streaming systems. Providing video streaming users in a VOD system with expected waiting times enhances their perceived quality-of-service (QoS) and encourages them to wait thereby increasing server utilization by increasing server throughput. In this work, we analyze waiting-time predictability in scalable video streaming. We also propose two prediction schemes and study their effectiveness when applied with various stream merging techniques and scheduling policies. The results demonstrate that the waiting time can be predicted accurately, especially when enhanced cost-based scheduling is applied. The combination of waiting-time prediction and cost-based scheduling leads to outstanding performance benefits. The achieved resource sharing by stream merging depends greatly on how the waiting requests are scheduled for service. Motivated by the development of cost-based scheduling, we investigate its effectiveness in great detail and discuss opportunities for further tunings and enhancements. Additionally, we analyze the effectiveness of incorporating video prediction results into the scheduling decisions. We also study the interaction between scheduling policies and the stream merging techniques and explore new ways for enhancements. The interest in video surveillance systems has grown dramatically during the last decade. Auto-mated video surveillance (AVS) serves as an efficient approach for the realtime detection of threats and for monitoring their progress. Wireless networks in AVS systems have limited available bandwidth that have to be estimated accurately and distributed efficiently. In this research, we develop two cross-layer optimization frameworks that maximize the bandwidth optimization of 802.11 wireless network. We develop a distortion-based cross-layer optimization framework that manages bandwidth in the wire-less network in such a way that minimizes the overall distortion. We also develop an accuracy-based cross-layer optimization framework in which the overall detection accuracy of the computer vision algorithm(s) running in the system is maximized. Both proposed frameworks manage the application rates and transmission opportunities of various video sources based on the dynamic network conditions to achieve their goals. Each framework utilizes a novel online approach for estimating the effective airtime of the network. Moreover, we propose a bandwidth pruning mechanism that can be used with the accuracy-based framework to achieve any desired tradeoff between detection accuracy and power consumption. We demonstrate the effectiveness of the proposed frameworks, including the effective air-time estimation algorithms and the bandwidth pruning mechanism, through extensive experiments using OPNET

    Virtualization-Based Cognitive Radio Networks

    Get PDF
    Abstract The emerging network virtualization technique is considered as a promising technology that enables the deployment of multiple virtual networks over a single physical network. These virtual networks are allowed to share the set of available resources in order to provide different services to their intended users. While several previous studies have focused on wired network virtualization, the field of wireless network virtualization is not well investigated. One of the promising wireless technologies is the Cognitive Radio (CR) technology that aims to handle the spectrum scarcity problem through efficient Dynamic Spectrum Access (DSA). In this paper, we propose to incorporate virtualization concepts into CR Networks (CRNs) to improve their performance. We start by explaining how the concept of multilayer hypervisors can be used within a CRN cell to manage its resources more efficiently by allowing the CR Base Station (BS) to delegate some of its management responsibilities to the CR users. By reducing the CRN users' reliance on the CRN BS, the amount of control messages can be decreased leading to reduced delay and improved throughput. Moreover, the proposed framework allows CRNs to better utilize its resources and support higher traffic loads which is in accordance with the recent technological advances that enable the Customer-Premises Equipments (CPEs) of potential CR users (such as smart phone users) to concurrently run multiple applications each generating its own traffic. We then show how our framework can be extended to handle multi-cell CRNs. Such an extension requires addressing the self-coexistence problem. To this end, we use a traffic load aware channel distribution algorithm. Through simulations, we show that our proposed framework can significantly enhance the CRN performance in terms of blocking probability and network throughput with different primary user level of activities

    Research Article Detailed Performance and Waiting-Time Predictability Analysis of Scheduling Options in On-Demand Video Streaming

    Get PDF
    Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The number of on-demand video streams that can be supported concurrently is highly constrained by the stringent requirements of real-time playback and high transfer rates. To address this problem, stream merging techniques utilize the multicast facility to increase resource sharing. The achieved resource sharing depends greatly on how the waiting requests are scheduled for service. We investigate the effectiveness of the recently proposed cost-based scheduling in detail and analyze opportunities for further tunings and enhancements. In particular, we analyze alternative ways to compute the delivery cost. In addition, we propose a new scheduling policy, called Predictive Cost-Based Scheduling (PCS), which applies a prediction algorithm to predict future scheduling decisions and then uses the prediction results to potentially alter its current scheduling decisions. Moreover, we propose an enhancement technique, called Adaptive Regular Stream Triggering (ART), which significantly enhances stream merging behavior by selectively delaying the initiation of full-length video streams. We analyze the effectiveness of the proposed strategies in terms of their performance effectiveness and impacts on waiting-time predictability through extensive simulation. The results show that significant performance benefits as well as better waiting-time predictability can be attained. 1

    Cash for the Register? Capturing Rationales of Early COVID-19 Domain Registrations at Internet-scale

    No full text
    The COVID-19 pandemic introduced novel incentives for adversaries to exploit the state of turmoil. As we have witnessed with the increase in for instance phishing attacks and domain name registrations piggybacking the COVID-19 brand name. In this paper, we perform an analysis at Internet-scale of COVID-19 domain name registrations during the early stages of the virus’ spread, and investigate the rationales behind them. We leverage the DomainTools COVID-19 Threat List and additional measurements to analyze over 150,000 domains registered between January 1st 2020 and May 1st 2020. We identify two key rationales for covid-related domain registrations. Online marketing, by either redirecting traffic or hosting a commercial service on the domain, and domain parking, by registering domains containing popular COVID-19 keywords, presumably anticipating a profit when reselling the domain later on. We also highlight three public policy take-aways that can counteract this domain registration behavior
    corecore